On the Power of Homogeneous Depth 4 Arithmetic Circuits

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Superpolynomial Lower Bounds for General Homogeneous Depth 4 Arithmetic Circuits

In this paper, we prove superpolynomial lower bounds for the class of homogeneous depth 4 arithmetic circuits. We give an explicit polynomial in VNP of degree n in n variables such that any homogeneous depth 4 arithmetic circuit computing it must have size n . Our results extend the works of Nisan-Wigderson [NW95] (which showed superpolynomial lower bounds for homogeneous depth 3 circuits), Gup...

متن کامل

Bounded Depth Arithmetic Circuits: Counting and Closure

Constant-depth arithmetic circuits have been defined and studied in [AAD97, ABL98]; these circuits yield the function classes #AC and GapAC. These function classes in turn provide new characterizations of the computational power of threshold circuits, and provide a link between the circuit classes AC (where many lower bounds are known) and TC (where essentially no lower bounds are known). In th...

متن کامل

An exponential lower bound for homogeneous depth four arithmetic circuits with bounded bottom fanin

Agrawal and Vinay [AV08] have recently shown that an exponential lower bound for depth four homogeneous circuits with bottom layer of × gates having sublinear fanin translates to an exponential lower bound for a general arithmetic circuit computing the permanent. Motivated by this, we examine the complexity of computing the permanent and determinant via homogeneous depth four circuits with boun...

متن کامل

Bounds on the Power of Constant-Depth Quantum Circuits

We show that if a language is recognized within certain error bounds by constantdepth quantum circuits over a nite family of gates, then it is computable in (classical) polynomial time. In particular, our results imply EQNC P; where EQNC is the constant-depth analogue of the class EQP. On the other hand, we adapt and extend ideas of DiVincenzo & Terhal [?] to show that, for any family F of quan...

متن کامل

Bounds on the Power of Constant-Depth Quantum Circuits

We show that if a language is recognized within certain error bounds by constant-depth quantum circuits over a finite family of gates, then it is computable in (classical) polynomial time. In particular, for 0 < ≤ δ ≤ 1, we define BQNC ,δ to be the class of languages recognized by constant depth, polynomial-size quantum circuits with acceptance probability either < (for rejection) or ≥ δ (for a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: SIAM Journal on Computing

سال: 2017

ISSN: 0097-5397,1095-7111

DOI: 10.1137/140999335